Solvent gradient electrospray for laser ablation electrospray ionization mass spectrometry.

نویسندگان

  • Hang Li
  • Akos Vertes
چکیده

Most electrospray based ambient ionization techniques, e.g., laser ablation electrospray ionization (LAESI), utilize a fixed spray solution composition. Complex samples often contain compounds of different polarity that exhibit a wide range of solubilities in the electrospray solvent. Thus, the fixed spray solution composition limits the molecular coverage of these approaches. Two-barrel theta glass capillaries have been used for the rapid mixing of two solutions for manipulating fast reactions including protein folding, unfolding, and charge state distributions. Here, we present a new variant of LAESI mass spectrometry (MS) by scanning the high voltages applied to the two barrels of a theta glass capillary containing two different solvents. In the resulting gradient LAESI (g-LAESI), the composition of the spray solution is ramped between the two solvents in the barrels to facilitate the detection of compounds of diverse polarity and solubility. Dynamic ranges and limits of detection achieved for g-LAESI-MS were comparable to conventional LAESI-MS. We have demonstrated simultaneous detection of different types of chemical standards, and polar and less polar compounds from Escherichia coli cell pellets using g-LAESI-MS. Varying the spray solution composition in a gradient electrospray can benefit from the enhanced solubilities of different analytes in polar and less polar solvents, ultimately improving the molecular coverage in the direct analysis of biological samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture/Electrospray Ionization.

Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed noncontact liquid-vortex capture probe has been used to efficiently collect material ablated by a 355 nm UV laser in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization....

متن کامل

Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI

This short review aims to summarize the current developments and applications of mass spectrometry-based methods for in situ profiling and imaging of plants with minimal or no sample pre-treatment or manipulation. Infrared-laser ablation electrospray ionization and UV-laser desorption/ionization methods are reviewed. The underlying mechanisms of the ionization techniques-namely, laser ablation ...

متن کامل

Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry.

Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three d...

متن کامل

Internal energy deposition and ion fragmentation in atmospheric-pressure mid-infrared laser ablation electrospray ionization.

Mid-infrared laser ablation of water-rich targets at the maximum of the 2.94 μm absorption band is a two-step process initiated by phase explosion followed by recoil pressure induced material ejection. Particulates and/or droplets ejected by this high temperature high pressure process can be ionized for mass spectrometry by charged droplets from an electrospray. In order to gauge the internal e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 142 16  شماره 

صفحات  -

تاریخ انتشار 2017